I just realised that in any unital ring commutativity of addition follows from distributivity:
$$$$\begin{array}{r@{\;}c@{\;}l@{\quad}} a + b &\;=\;& -a + a + a + b + b - b \\ &\;=\;& -a + a\cdot(1 + 1) + b\cdot(1 + 1) - b \\ &\;=\;& -a + (a + b)\cdot(1 + 1) - b \\ &\;=\;& -a + (a + b)\cdot 1 + (a + b)\cdot 1 - b \\ &\;=\;& -a + a + b + a + b - b \\ &\;=\;& b + a \end{array}
The same holds for unital modules, algebras, vector spaces, &c. Note that multiplication doesn't even need to be associative. It's amazing how such things can pass unnoticed.